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Abstract—Velocity distribution and mass transport for plug and laminar flow are determined for liquid

flow in sector and annular sector tubes. The wall concentration and the initial concentration of the inlet

to the tube are considered constant. The concentration profiles are determined in various locations of the

cross-section and along the length of the tube. In addition lines of equal liquid velocity and equal
concentration are presented for the plug and laminar flow case.

1. INTRODUCTION

THE MASS transport problem has been investigated in
channels and tubes for plug and laminar flow for
many decades [1-6]. In most of these cases the partial
differential equation obtained exhibited only two vari-
ables, while the velocity distribution could be pre-
sented as a simple one-variable function. In a sector
or annular sector tube, however, the angular coor-
dinate ¢ appears, such that the diffusion equation
exhibits the three coordinates r, ¢, z, while the liquid
velocity inside the tube may only be described by an
infinite series, where the terms exhibit functions of the
two coordinates r and ¢. This yields a mass transport
equation which does not admit a completely analytical
solution. For this reason the plug flow solution is used
as an expansion function for the laminar flow case.
With the Galerkin method applied to the mass trans-
port problem with laminar flow, the Galerkin con-
dition yields an infinite number of algebraic equations,
of which the vanishing of the truncated coefficient
determinant renders the approximation of the lower
eigenvalues, Since with increasing axial coordinate the
exponential function, describing the mass transport
behaviour along the tube length, rapidly approaches
vanishing magnitude, the convergence of the result
presenting the concentration is very good. In the
course of the numerical evaluation it was, however,
found, that the numerical procedure, based on the
analytical solution (i.e. the treatment of the coefficient
determinants and the integrals of Bessel functions),
needs considerably more computer time than the orig-
inal numerical solution of the mass transport
problem. This numerical solution for both cases, i.e.
plug and laminar flow, was in addition used to prove
the accuracy of the analytical solution. They produce
identical results.

2. BASIC EQUATIONS

For the determination of the local concentration
one has to solve the partial differential equation for

mass transport. This may be performed for the case
of a plug flow and that of laminar flow in a tube of
annular sector cross-section.

2.1. The flow problem

Assuming laminar flow along the z-axis for which
only the axial flow component w # 0, one has to solve
for a pipe with annular sector cross-section of angle
2no (Fig. 1) with radial and angular flow velocity
u=v =0 and continuity equation dw/éz =0 for
stationary flow the Navier-Stokes equation
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with the no-slip boundary condition at
w=0 for¢ =0,2raandr =a,b. (2)

Expanding w(r,¢) into a Fourier sine series satisfying
the boundary conditions at ¢ = 0 and 2z« yields

wr.g) = ¥ W,()sin (2 ¢>. 3)
m=1 o
With the expansion of the pressure gradient
1 dp * (m
Ea—mglpmslﬂ <£¢> (4)
with

0 for m even

_J) 4
Pp=q 7 <@> for m odd &)
num \ 0z

one obtains the differential equation

0 for m even
1dw,, m? 4

A for m odd
nmm 0z

d? w.. 1 Vo M B
dr? r dr 4oy T
(6)

for the determination of the function W,,(r). The solu-
tion of this differential equation satisfying the remain-
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NOMENCLATURE

a outer radius of annular sector tube )4 liquid pressure
b inner radius of annular sector tube r, ¢,z cylindrical polar coordinates
c concentration 14 volumetric flow
¢ initial concentration at inlet z = 0 w axial liquid velocity
Cw wall concentration at r = @, b; Wo plug flow velocity.

¢ =0,270
D diffusion coefficient . Greek symbols
Joi2ar Ymp2e  Bessel functions of first and Bun eigenvalues

second kind of order m/2« n dynamic viscosity
k bla 2mee  sector angle of tube cross-section.

ing boundary conditions W,, =0 at r = a,b is given = One has to observe, for this solution, that o # 1/4, 3/4
by (W,,, = 0) . for m = 1 and 2, respectively. For o = 1/4 one obtains
the solution

0
Won_1(r) = (4a2 (6—Iz)>/mt(2m—l) p <5P>

Kl 2 4
@1\ (P} _ ) pcomysers 0= A () et
x| 4= L) -la—k )/ nn a aj  (1=k%)
2 k*Ink (aV
(]_kum—n/a)]<r>(2m & — [k D2 _UT}T) <;> } ®
a

(o 1y while for o = 3/4 the function W;(r) in equation (7)
(kz — ftam= 1)/20;)/(1 _ jam— 1)/m)] ((l) } G has to be substituted by
;

2 (%P
¢ (5Z> ry r k*lnk
W =5 e/ ™M\ T amm
k*Ink <a>2 9
“a=\) O

s In the case of a sector cross-section, i.e. k = 0 (b = 0)
PG\ . .
AN the solutions are given by
0 b a
Various Cross-Sections of Tube 4 <‘;1’> a?
zZ

WZm—l(r) =

nn(2m—1) [4 _ <2m_1>2]
2u
r 2 r (2m— 1)/ 2«
§ {O _ () } for z # 174,34 (T")
a a

2 (0P
“ 52) rN. (r ,
W,(r)=——n—— Z) In . fora=1/4 (8)

2 (9P
‘ <$) P, [ )
Wi(r) = 3 \a In g for o = 3/4. (9")

Fic. 1. Geometry of cross-section of tube and coordinate ~ The velocity distribution for laminar flow in a tube of
system. sector cross-section is therefore (Fig. 2)

and
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F1G. 2. Flow profile of laminar viscous flow and lines of equal velocity.
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where for a circular quarter cross-section « = 1/4 the
term m = 1 in the series has to be substituted by equa-
tion (8”) and where for a circular three-quarter cross-
section o = 3/4 the term m = 2 must be replaced by
equation (9'). The velocity distribution for an annular
sector cross-section is (Fig. 2)

r 2 (1 __k(2m—l)/2u+2) r (2m— 1)/ 20
{(“) “(W—“W(E)

k(2m— l)/Za(kl _k(2m— l)/Zaz) a (2m— 1)/ 2a
- (Gm— 1)ja - . (10
(1—k ) r

For a = 1/4 the term m = 1 has to be replaced by
equation (8) and for a = 3/4 the term m = 2 has to be
substituted by equation (9). The flow volume per time
unit is given by

V= J‘ZM r w(r, @)rdrd¢

and yields (« # 1/4, 3/4) the expression

1 1
~ oo [Z T (@m— l)/2a)+2]

. —léa*a(dp
- <5> 2, 2[ (Zm— 1>2]
@m—1)?] 4 -

20

an

for the sector cross-section, and

20

. 16a4a<ap> el 1
Vo=—(2] % .
. \0z m:l(zm_1)2[4_<2m—1>]

(1-k%

X 4 2m—1
(2m— 1)/ }

(1 _k(me l)/2u+2)2

(2m— 1)/a 2 _ p(2m—1)/2a _2-(2m—-1)/2a
k (k*—k Y-k )

2m—1
_ p(2m—1)/a .
(1—k ) (——za 2)

for the annular sector cross-section. For the sector
angles a = 1/4 and 3/4 one has to replace in equation

(12)
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(11) the term m = 1 by —a*(9p/dz)/16nn and m = 2
by —a*(dp/0z)/48ny, respectively. For the annular
pipeline with the sector of « = 1/4 and 3/4 the term
m = 1 has to be replaced in equation (12) by

_a*(0p/oz) { Lkt 16k4(1nk)2}

16nn 1—k*
and m =2 by
_ a'(@p/o2) { Lgé 16k6(lnk)2}
48nn 1—k*
respectively.

2.2. The mass transport problem

Since the medium is flowing the local concentration
change must be determined by the effects of con-
vection and molecular diffusion. The mass transport
equation therefore reads

0% 138c 1 d* 0% dc
D[ﬁ+;5+r—2w+ﬁ]—w(n¢)&=o.
(13)
In this equation the diffusion in the axial direction
(~%c/dz*) may be neglected compared to the con-
vective part (~0dc/dz). If the flow in the tube is con-
sidered a plug flow, i.e. w = w, = const. the partial

differential equation for the mass transport is given
by

0%c 1dc
ort " ror  r*og?
and has to be solved with the boundary conditions of
constant wall concentration

c=c¢, atthewallsr=gqa,band ¢ =0,2na.

If the flow is laminar one has to introduce instead of
wy expression (10), where the velocity distribution is
represented as an infinite series. For both flow cases
the local concentration and mean concentration is
determined if at the inlet z = 0 the concentration
¢ = ¢; = const.

3. METHOD OF SOLUTION

Two cases of mass transport in a tube of circular
annular sector cross-section will be distinguished, one
being that of plug flow w = w, in the tube and the
other of laminar flow, the solution of which requires
the knowledge of the case with plug flow.

3.1. Plug flow
With the dimensionless coordinate y =r/a the
differential equation to be solved for plug flow yields

2
if 1 dc (14)
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which has to be solved with the boundary conditions
(k = bja)

c=c¢, atthewallsy=k,1and ¢ =0,2na.
Substituting
C—Cw _ Co—¥
ci—c,,

results in the boundary conditions C =0 at y = k, |
and ¢ = 0,2na, the initial condition C=1at z=0
and

a*C loc 1 o:C

— —_— ——— 2 =
557 +y F3 +_v2 0¢2+ﬂ C=90
where
2.
2 Wold 4
B ="
The solution is given by
C(,V~¢) z Z Amn‘('] z:(ﬁan’) /2m(ﬂmn
m=0n=1
- Jm,’Za( (an) Ym/Zaz(ﬁmny)} Sin (m/za)((l))

where $,,, are the roots of

Jm/’Zm (ﬁ) Ym/Zz (ﬂ)
Jmf’ 2a (kﬁ) Ym/ 20 (kﬂ)

and 4,, are integration constants to be determined
from the initial condition C =1 at the inlet z = 0.
They are

4,y = < f N f YCoa (Bon?) sm( ¢)dyd¢>/
J j ,V m/Za(any) Sln ( ¢> dyd¢>

m/ 20 (ﬁmn.}) Ym/ 2a (ﬂmn )
- m/’2zx (ﬁmn ) Ym/Zm (an y)

=0 (15)

where

m Qa (,an})

It is finally

1
At = (4_[( YC2m-1y2aBam—1a¥) d}’/

n(2m— 1)J; ,VC(zsz 122 (Bam—12¥) dJ/>- (16)

With the orthogonality condition of C,,5,(8.mp),
given by

J; yCm/21(ﬁmny)cm,’21(/jmpy) dy

{0 forn+#p }
{C/m Za(an) k C/m 71(ﬁmnk)} forn = 14
amn
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one obtains

1 /
Ay 1y = (8 f VYCam— 2B 1n¥) Ay / n(2m~1)

X {C/(22m~ 2aBam—1n) =K C 'l 1125 (B Ink)}>'
The local concentration is therefore given by

(rnh D) = eyt (—c) S S A,

m=1n=1

2m—1
xC(Zm—l)/Za (ﬂZmlné)Sin <( ” )¢>
D 2m‘ln
xexp|:—ﬂwzoa<2>:|. (18)

For a sectorial cross-section (k = 0) the local con-
centration is given by the expression

C(rs¢az)=cw+(ci—cw) Z Z A2m~ln
m=1ln=1]

ry. (@Cm—1)
X J (2= 1)24 <gzm In a) sin <—“20( - ¢>
Dp? z
X exp [— Tl <>} (19)
woa a

n(2m— I)J/(Zme 1)/20:(52».7— ln)> (20)

and f,, are roots of

Jm,/za(ﬁ) =0. (2])

From the above results all special cases may be
obtained.

3.2. Laminar flow

The concentration for laminar flow in a tube of
annular sector cross-section is obtained from the solu-
tion of the partial differential equation
*c 1dc 1 ¢* 4a*
oyt yiae " wbn

sin [;(2”;;9 d’:l

R )

20

R (l_k(mel)/21+2)
X - (1 _k(Zm—I),'zr
(2m— 1)/ 2 2 (2m— 1)/ 2a Ao
—k ()l _(]Z(ZZ-_kl),/x) ly*(zm'—|)r'2&}gF = 0

(2m~ 1) 22
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which in the case of a tube of sector cross-section
reads

g i 1%
oy oy T e
“n I:(2m-—l) ¢]
4a*(6p/oz) i 20
D "V o1 2m—1Y
"em—-1)| 4 "
dc
2 (2m~Dy2ay T
x {y>—y b, =0 23

The solution for the local concentration is given by
equations (18) and (19), respectively, for which new
eigenvalues ¥, have to be determined by the fol-
lowing procedure. The solution of the above treated
case of plug flow is used. It exhibits the eigenvalues
B.... For the above differential equation for the con-
centration with laminar flow a solution is assumed
satisfying the same boundary conditions and having
the same eigenfunctions as the case of plug flow. Thus
it is with

C—Cy

=C*e ™
Ci— Cy
ey gy CCF  LECT 1 2Cr 4aA
[Car o=+ % Ty 3™ T D
: [(21—1) ]
<X <2p> 2
=1 —
@2i-1 |:4 — <————2a > :|
« {yz__[(l_k(y—l)/21+2)y(21—l)/2a+k(.21— 1)/2x
% (kz__k(zl— 1)/2a)y‘(21— 1)/2«]/(1 _k(zl— l)/a)}c* — 0

@4

where the solution may be written in the form

C*(y. ¢) = Z Z B,,,,Cy 2B ¥) sin (2 d))- (25)

m=ln=1
This solution satisfies all boundary conditions. Intro-
ducing it into the above differential equation and
observing equation (24), one obtains by employing
the orthogonality relation of C,,5,(f,,y) after aver-
aging a homogeneous system of algebraic equations
for the approximate determination of the eigenvalues
*.(A,.), where

re=4a’A,,, /1 D(0p/oz).

The remaining constants B,,, are obtained from the
initial conditions. The Galerkin condition is

L JkE[C*;y,qﬁ 1¥Co2a Buny) sin (2 ¢>>dyd¢> =0
(26)

for u=1,2,... and v=1,2,..., and yields an oo?
number of homogeneous infinite algebraic equations
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in the remaining constants B,, [7]. The vanishing
coefficient determinant of this system gives finally the
eigenvalues f%,. Truncating the infinite algebraic sys-
tem by a finite m and » renders a determinant of
finite order, which yields approximate values for the
lower eigenvalues f%,. It was found, that the com-
puting effort of this method became more time con-
suming than the numerical solution of the mass trans-
port equation. For this reason the numerical
evaluation of the above mentioned determinant, as
obtained by an analytical treatment of the problem
was abandoned in favour of the pure numerical solu-
tion.

4. NUMERICAL EVALUATION

Some of the previous results have been evaluated
numerically. The velocity distribution of laminar flow
has been presented in Figs. 2(a)—(f) for various sector

lines. The ratio
op\a*
w(r, ¢) / (az>77

is shown for various values of o and coordinates r/a
and ¢. Figure 2(a) represents the velocity of the liq-
uid in a pipeline with the sector angle of
15° = 2na (2« = 1/24). Since the velocity is symmetric
to ¢ = 7.5% it is only presented from ¢ = 0 to 7.5" as
a function of r/a. It may be noted that the velocity
increases with the angular coordinate ¢ and with the
radius r. It reaches a maximum value close to r = q,
of which the maximum shifts with decreasing ¢
towards the wall r = a. This is true in the opposite
sense for 7.5° < ¢ < 15° = 2na. Figure 2(b) shows in
addition the lines of equal velocity, expressing, the
location of the larger velocities. Similar results are
presented for « = 1/12, 1e. 2no = 30°, o= 1/72,
o= (1/8)(2na = 45°) in ref. [8], Figs. 2(c) and (d)
and o = 1/4, i.e. a pipeline of quarter cross-section
(270 = 90°). Another case of o = 3/4, i.e. a pipeline
of three-quarter cross-section (2rx = 270°) is shown
in Figs. 2(e) and (f). Here the velocity distribution is
presented for the angular angles ¢ = 10°, 20°, 30°,
.., 130°. Figure 2(f) exhibits the lines of equal
velocity, from which it can be noted that the maximum
velocity appears in the second quadrant. The mass
transport for plug flow is exhibited in Figs. 3 and
4. TIn Figs. 3(a)-(e) the concentration ratio
(c—cy)/(ci—c,) is presented along the tube, expressed
by the coordinate (D/wya)(z/a). The results are given
for various radii ratios b/a = k, sector angles 2na and
angular angles ¢ for k < rfa < 1. Figure 3(a) shows
the concentration for k=0.1 and 2zma=30°
(x = 1/12). First of all one detects that the con-
centration decreases along the length of the tube z and
that it exhibits larger magnitude towards the wall
r = a. With increasing diffusion parameter D/wa it
decreases in magnitude, i.e. increasing diffusion
coefficient D or decreasing plug flow velocity. The
largest concentration profile appears in the plane of
symmetry ¢ = mo, which is here ¢ = 15°. The con-
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centration for the annular sector tube of 2ma = 30°
and k = 0.5 is shown in ref. [8]. It may be mentioned
that unity for the concentration ratio (¢ —c,)/(ci—cy,)
is shown on all figures. Similar results are given in ref.
[8] for k= 0.1 and « = 1/6 and k = 0.5 and o = 1/6.
For a quarter tube a = 1/4, k = 0.1, 0.5 and 0.7 the
concentration ratio for plug flow, is gresented in Figs.
3(c)—(e). One can note, that with the increase of sec-
torial angle o the concentration decay becomes much

H. F. BAUER

slower along the tube, which, of course, is reduced
again by changing the annular sector geometry of the
cross-section, i.e. by decreasing the value of k. Figures
4(a)~(e) show the lines of equal concentration in the
tube at the location (D/wya)(z/a) = 0.01 for various
values of a and k. With increasing k the lines of equal
concentration become more oval as the sector angle
increases.

For laminar flow the distribution of the con-
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centration ratio (¢ —c¢,)/(¢;— ¢, ) is presented for vari-
ous annular parameters & and sector angles 27 in
Figs. 5 and 6, where Fig. 5 renders the concentration
profiles along the pipe length and its cross-section,
while Fig. 6 shows again the lines of equal concen-
tration. In Figs. 5(a)—(e) the concentration is given
across the cross-section of the tube and at various
locations Dz/wa” along the tube. Here 1 is the mean
velocity of the liquid in the tube. The concentration

1465

profiles exhibit similar behaviour as in the cases of
plug flow. It may, however, be noted that its mag-
nitude is reduced less rapidly in laminar flow (compare
Figs. 3 and 5). The lines of equal concentration are
presented in Figs. 6(a)-(e) for various tube cross-
sections (k and «) at the location Dz/wa® = 0.01,
where the larger concentration in comparison with
plug flow may be noticed in the ‘centre’ of the tube.
It may be mentioned, that the solution based on the
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F1G. 6. Lines of equal concentration for laminar flow.

analytical treatment and the results of the numerical
solution of the mass transport equation yield identical
results.
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TRANSPORT DE MASSE DANS DES TUBES SECTEUR ET SECTEUR ANNULAIRE

Résumé—Le profil de vitesse et le transport de masse pour un écoulement piston et laminaire de liquide

sont déterminés dans des tubes secteur ou secteur annulaire. Les concentrations 4 la paroi et a I’entrée du

tube sont supposées constantes. Les profils de concentration sont déterminés en plusieurs points de la

section droite et le long du tube. On présente aussi les courbes isovitesses et d’égale concentration pour les
cas considérés.

STOFFUBERGANG IN SEKTOR- UND RINGSEKTOR-ROHREN

Zusammenfassung—Fiir Pfropfen- und Laminar-Stromung von Flissigkeit in Sektor- und Ringsektor-

Rohren werden Geschwindigkeitsverteitung und Stoffiibergang bestimmt. Die Konzentration an der Wand

und die Anfangskonzentration am Rohreinla werden als konstant angenommen. Es werden Kon-

zentrationsprofile fir verschiedene Punkte des Querschnitts und in Lidngsrichtung der Rohre ermittelt.

Zusitzlich werden Linien gleicher Geschwindigkeit und Konzentration der Flissigkeit fir den Fall der
Pfropfen- und Laminarstrémung gezeigt.

MACCOIEPEHOC B TPYBAX, PA3AEJIEHHBIX HA CEKTOPLI, 1 B
CEKIITMOHUPOBAHHBIX KOJIBLIEBBIX TPYBAX

Annorauns—Pacnpe/ieJileHHe CKOPOCTH M MAcCONEPEHOC NOJyYeHbl U1 CTEPXKHEBOTO M JIAMHHAPHOIO

PEXNMOB TEYEHHA XUIKOCTH B TPY6ax M KOJBLEBBLIX KaHajlaX, pa3fe/ICHHbIX Ha ceKTophl. KoHueHTpa-

M Ha CTEHKE M Hava/ibHas KOHIIEHTPAalus Ha BXode B TpyOy noJjiarajiuch nocTosHHBIMH. IIpodunu

KOHUEHTPAINM ONpPENeSUIUCE B PA3IUYHBIX MECTaX MOMEPEYHOTO CedeHHs M mo aamHe TpyOsl [Mpenc-

TapeHbl TpA(GHKH PABHON CKOPOCTH XHIKOCTH H PaBHOH KOHLEHTPAlHM AJIS CJIyYaeB CTEPXHEBOTO H
JIAMHHAPHOTO PEXHUMOB TEYECHHS.



